ASSESSMENT OF CARBACETAM EFFECT WITH CEREBRAL MITOCHONDRIAL DYSFUNCTION OF RATS WITH TYPE 2 DIABETES MELLITUS

Authors

  • Kmet O. G. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine
  • Filipets N. D. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine
  • Rohovyi Yu. Ye. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine
  • Hrachova T. I. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine
  • Vepriuk Y. M. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine
  • Vlasova K. V. Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Chernivtsi, Ukraine

DOI:

https://doi.org/10.21856/j-PEP.2020.3.02

Keywords:

carbacetam, type 2 diabetes mellitus, functional state of the mitochondria

Abstract

Neurodegenerative disorders in the cerebral cortex and hippocampus are one of the most common causes of disability and mortality in patients with diabetes. Excessive glucose concentration causes a toxic effect due to an increased amount of glycolysis products, lipid and protein peroxide oxidation, decreased membranous potential of the mitochondria and deficiency of neuron energy supply due to mitochondrial dysfunction. Gammaamino butyric acid is known to localize to the mitochondria, and its functional cycle is closely linked to glucose metabolism. Objective of the study: experimental investigation of сarbacetam effect with cerebral mitochondrial dysfunction of rats with type 2 diabetes mellitus. The experiments were conducted on laboratory nonlinear albino male rats with the body weight 0.18–0.20 kg. Type 2 diabetes is modeled on streptozotocin and a high-fat diet. Carbacetam was administered intraperitoneally at a dose of 5 mg/kg, once daily for 14 days. Under conditions of central nervous system damage induced by type 2 diabetes mellitus, lipid and protein peroxide oxidation increases in the mitochondrial fraction of the cerebral cortex and hippocampus of rats; activity of superoxide dismutase, catalase, α-ketoglutarate dehydrogenase, succinate dehydrogenase decreases; a relative rate of mitochondrial swelling increases. After carbacetam administration during 14 days the content of products reacting with 2-thiobarbituric acid and protein oxidation modification decrease in the mitochondria of the brain and hippocampus of rats with type 2 diabetes mellitus; activity of catalase in the cerebral cortex and α-ketoglutarate dehydrogenase in the hippocampus increases, activity of succinate dehydrogenase increases in both structures examined which is indicative of its antioxidant properties. Decrease of a relative rate of mitochondrial swelling in the cerebral cortex and hippocampus of rats confirms a protective effect of carbacetam under conditions of mitochondrial dysfunction.

References

Yanitska L, Tykhonenko T, Guzyk M, Kuchmerovska T. Endocrinology 2017;22(3): 279-283.

Voloshchuk ON, Kopylchuk GP. Biomed Chem 2016; 62(2): 169-172.

Ghazaleh Ashrafi, Timothy AR. Curr Opin Neurobiol 2017; 45: 156-161. https://doi.org/10.1016/j.conb.2017.03.007.

Yin F, Sancheti H, Patil I, Cadenas E. Free Radic Biol Med. 2016; 100: 108-122. https://doi.org/10.1016/j.freeradbiomed.2016.04.200.

Ziablitsev SV, Starodubska OO. Pathologia. 2017; 1: 95- 99. https://doi.org/10.14739/2310-1237.2017.1.97502.

Kmet OG, Filipets ND, Kmet TI, et al. Probl Endocrine Pathol 2019; 4: 52-59. https://doi.org/10.21856/jPEP.2019.4.07.

George Paxinos, Charles Watson. The Rat Brain in Stereotaxic Coordinates. 7-th Ed. Academic Press, 2013: 472 p.

Kopylchuk GP, Voloshchuk OM. Animal Biol 2019; 21(3): 14-20.

Kushnir OYu, Yaremii IM, Shvets VI, Shvets NV. Fiziol Zhurn 2018; 64(5): 54-62. https://doi.org/10.15407/fz64.05.054.

Kopylchuk GP, Voloshchuk OM. Ukr Biochem J 2016; 88(2): 66-72. http://dx.doi.org/10.15407/ubj88.02.066.

Feysa SV. Fiziol Zhurn 2019; 65(2): 89-96. https://doi.org/10.15407/fz65.02.089.

Prohorova MI. Methods of biochemical studies (lipid and energy metabolism), Leningrad, 1982: 272 р.

Vadzyuk OB. Ukr Biochem J 2015; 87(6): 86-94. https://doi.org/10.15407/ubj87.06.086.

Eisenhofer S, Toуkos F, Hense BA, et al. BMC RES Notes 2010; 3: 67. https://doi.org/10.1186/1756-0500-3-67.

Ceban E, Banov P, Galescu A, Botnari V. J Med Life 2016; 9(3): 259-262.

Zhukovska AS, Shysh AM, Moibenko OO. Int J Physiol Pathophysiol 2012; 4: 363-370. https://doi.org/10.1615/IntJPhysPathophys.v3.i4.80.

Dubinin MV, Vedernikov AA, Khoroshavina EI, et al. Biol Membranes 2015;32(5-6): 328-337.

Adav SS, Park JE, Sze SK. Molecular brain 2019;12(1): 1-8. https://doi.org/10.1186/s13041-019-0430-y.

Ifhar LS, Ene HM, Ben-Shachar D. Eur Neuropsychopharmacol 2019; 29(5): 577-589. https://doi.org/10.1016/j.euroneuro.2019.03.011.

Trujeque-Ramos S, Castillo-Rolуn D, Galarraga E, et al. Front Neurosci 2018; 12: 345. https://doi.org/10.3389/fnins.2018.00345.

Laskowski M, Augustynek B, Bednarczyk P, et al. Int J Mol Sci 2019;20(21): 1-18. https://doi.org/10.3390/ijms20215323.

Korol SV, Jin Z, Jin Y, et al. EBio Medicine 2018;30: 273-282. https://doi.org/10.1016/j.ebiom.2018.03.014.

Downloads

Published

2021-08-17

How to Cite

Kmet, O. G. ., Filipets, N. D., Rohovyi, Y. Y., Hrachova, T. I., Vepriuk, Y. M., & Vlasova, K. V. (2021). ASSESSMENT OF CARBACETAM EFFECT WITH CEREBRAL MITOCHONDRIAL DYSFUNCTION OF RATS WITH TYPE 2 DIABETES MELLITUS. Problems of Endocrine Pathology, 73(3), 16-24. https://doi.org/10.21856/j-PEP.2020.3.02

Issue

Section

CLINICAL ENDOCRINOLOGY