The activity of protein kinase b and extracellular signal-regulated kinase-1/2 in thyroid tumors normalized to expression of protein kinases in tissue
DOI:
https://doi.org/10.21856/j-PEP.2017.3.05Keywords:
thyroid, benign and malignant tumors, extracellular signal-regulated kinase-1/2, protein kinase B (Akt).Abstract
The activation of the effector kinase of the mitogenic cascade – extracellular signal-regulated kinase-1/2 (ERK1/2) and the main effector protein kinase of the phophatidylinositol-3-kinase cascade (РI3K) — protein kinase B (Акt) in normal tissues, benign and malignant thyroid tumors. ERK activity normalized with respect to the total protein kinase content in the tissue was lower in tumors compared to conventionally normal tissue, which may indicate a lack of correlation with proliferative processes in tumor tissue of the thyroid. The total activity of all three isoforms of Akt1/2/3 was also suppressed in tumors compared to normal tissue. Perhaps the results are related to the phenomenon of so-called oncogenic toxicity. Possible mechanisms for suppressing the activity of the mitogenic signaling cascade and the signal cascade RІ3K/Akt in thyroid tumors are discussed.
References
Burotto M, Chiou VL, Lee JM, Kohn EC. Cancer 2014; 120(22):3446-3456. https://doi.org/10.1002/cncr.28864
Low HB, Zhang Y. Immune Netw 2016; 16(2):85-98. https://doi.org/10.4110/in.2016.16.2.85
McCubrey JA, Steelman LS, Chappell WH, et al. Biochim Biophys Acta 2007; 1773(8):1263-1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
Caronia LM, Phay JE, Shah MH. Clin Cancer Res 2011; 17(24):7511-7517. https://doi.org/10.1158/1078-0432.CCR-11-1155
Lake D, Correa SA, Muller J. Cell Mol Life Sci 2016; 73(23):4397-4413. https://doi.org/10.1007/s00018-016-2297-8
Xing M. Nat Rev Cancer 2013; 13:184-199. https://doi.org/10.1038/nrc3431
Tronko ND, Pushkarev VM. Cytol Genet 2016; 50(6): 366-371. https://doi.org/10.3103/S0095452716060098
Montagut C, Settleman J. Cancer Lett 2009; 283(2):125-134. https://doi.org/10.1016/j.canlet.2009.01.022
Milosevic Z, Pesic M, Stankovic T, et al. Transl Res 2014; 164(5): 411-423. https://doi.org/10.1016/j.trsl.2014.06.005
Manning BD, Toker A. Cell 2017; 169(3):381-405. https://doi.org/10.1016/j.cell.2017.04.001
Tang F, Wang Y, Hemmings BA, et al. Semin Cancer Biol 2017; S1044-579X(17):30117-30117.
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. ScientificWorld Journal 2013; 2013:756134.
Xing M. Thyroid 2010; 20(7):697-706. https://doi.org/10.1089/thy.2010.1646
Pushkarev VM, Kovzun OI, Popadiuk ID, et al. Dopov Nac akad nauk Ukr 2011; 3:169-171.
Guda BB, Pushkarev VV, Zhuravel OV, et al. Dopov Nac akad nauk Ukr 2015; 10:94-98.
Park JI, Strock CJ, Ball DW, Nelkin BD. Mol Cell Biol 2003; 23(2):543-554. https://doi.org/10.1128/MCB.23.2.543-554.2003
Park JI. Front Biol (Beijing) 2014; 9(2):95-103. https://doi.org/10.1007/s11515-014-1299-x
Hong SK, Yoon S, Moelling C, et al. J Biol Chem 2009; 284(48):33006-33018. https://doi.org/10.1074/jbc.M109.012591
Wu PK, Hong SK, Veeranki S, et al. Mol Cell Biol 2013; 33(20):4051-4067. https://doi.org/10.1128/MCB.00021-13
Masliah-Planchon J, Garinet S, Pasmant E. Oncotarget 2016; 7(25):38892-38907. https://doi.org/10.18632/oncotarget.6476
Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. Curr Opin Struct Biol 2016; 41:151-158. https://doi.org/10.1016/j.sbi.2016.07.019
Cagnol S, Chambard JC. FEBS J 2010; 277(1):2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
Mebratu Y, Tesfaigzi Y. Cell Cycle 2009; 8(8):1168-1175. https://doi.org/10.4161/cc.8.8.8147
Shimura T. J Radiat Res 2011; 52(5):539-544. https://doi.org/10.1269/jrr.11098
Wilks ST. Breast 2015; 24(5):548-555. https://doi.org/10.1016/j.breast.2015.06.002
Xu Y, Li N, Xiang R, Sun P. Trends Biochem Sci 2014; 39(6):268-276. https://doi.org/10.1016/j.tibs.2014.04.004
Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. Cancer Manag Res 2013; 5:281-292.
Lien EC, Dibble CC, Toker A. Curr Opin Cell Biol 2017; 45:62-71. https://doi.org/10.1016/j.ceb.2017.02.007